Code No: 154AQ JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year II Semester Examinations, November/December - 2020 DISCRETE MATHEMATICS (Common to CSE, IT)

Time: 2 hours

Max. Marks: 75

Answer any five questions All questions carry equal marks

1.a)	Show that $\sim p \lor (\sim p \land q \text{ and} (\sim p \land \sim q) \text{ are logically equivalent.}$	[0 7]
b)	Show that $\sim p \land q$, $\sim q \lor r \sim r \Longrightarrow \sim p$.	[8+/]
2.	Prove that $\forall x \ P \ x \lor Q \ x \implies x \ P \ x \lor \exists x \ Q(x).$	[15]
3.	Show that congruence modulo m is an equivalence relation on integers.	[15]
4.a) b)	A relation R on A is symmetric if and only if $R = R^{-1}$. A relation R on A is reflexive if and only if R^{-1} is reflexive.	[7+8]
5.	Prove by Mathematical induction that $6^{n+2} + 7^{2n+1}$ is divisible by 43 for each pointeger n.	ositive [15]
6.	Prove that, if F_n is the n th Fibonacci number, then $F_n = \frac{1}{5} \frac{1+5}{2}^{n+1} - \frac{1+5}{2}$	n+1 for
	all integers $n \ge 0$.	[15]
7.	Solve the recurrence relation $a_n - a_{n-1} - 12a_{n-2} = 0$, $a_0 = 0$, $a_1 = 1$.	[15]
8.a)	State and prove fundamental theorem of graph theory.	
b)	Prove that a complete graph K_n is planar if and only if $n \le 4$.	[7+8]
00000		